Latitudinal gradients in avian coloration

  • Darwin, CR On the origin of species or the conservation of favored races in the struggle for life (John Murray, 1859).

  • Wallace, AR Natural selection and tropical nature: descriptive and theoretical biology essays 2nd ed. (Macmillan, 1895).

  • Darwin, CR A naturalist’s journey around the world (John Murray, 1913).

  • Wallace, AR Color in nature. Nature 19580–581 (1879).

    Google Scholar

  • Dalrymple, RL et al. Abiotic and biotic predictors of macroecological patterns of bird and butterfly coloration. School. Mongr. 88204-224 (2018).

    Google Scholar

  • Adams, JM, Kang, C. & June-Wells, M. Are tropical butterflies more colorful? School. Res. 29685–691 (2014).

    Google Scholar

  • Bailey, SF Latitudinal gradients in passerine colors and patterns. Condor 80372–381 (1978).

    Google Scholar

  • Wilson, MF & Von Neaumann, RA Why are Neotropical birds more colorful than North American birds? Poultry magazine. 78141–147 (1972).

    Google Scholar

  • Dalrymple, RL et al. The birds, butterflies and flowers of the tropics are no more colorful than those of higher latitudes. Global. School. Biogeogr. 241424-1432 (2015).

    Google Scholar

  • Friedman, NR & Remeš, V. Ecogeographic gradients in plumage coloration among Australasian songbird clades. Global. School. Biogeogr. 26261-274 (2017).

    Google Scholar

  • Dale, J., Dey, CJ, Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage coloration. Nature 527367-370 (2015).

    CASE

    Google Scholar

  • Dunn, PO, Armenta, JK & Whittingham, LA Natural and sexual selection act on different axes of color variation in avian plumage. Science. Adv. 1e1400155 (2015).

    PubMed
    PubMed Center

    Google Scholar

  • Stoddard, MC & Prum, RO How colorful are birds? Evolution of the color range of avian plumage. School behavior 221042–1052 (2011).

    Google Scholar

  • Renoult, JP, Kelber, A. & Schaefer, HM Color spaces in ecology and evolutionary biology. Biol. Tower. 92292–315 (2017).

    Google Scholar

  • Stoddard, MC & Prum, RO Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World sparrows. A m. Nat. 171755–776 (2008).

    Google Scholar

  • Delhey, K. The color of an avifauna: a quantitative analysis of the color of Australian birds. Science. representing 518514 (2015).

    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Olson, DM et al. Terrestrial ecoregions of the world: a new map of life on Earth. Biosciences 51933–938 (2001).

    Google Scholar

  • Rabosky, DL et al. An inverse latitudinal gradient of speciation rate for marine fishes. Nature 559392–395 (2018).

    CASE

    Google Scholar

  • Lynch, M. Methods of Comparative Data Analysis in Evolutionary Biology. Evolution 451065-1080 (1991).

    PubMed
    PubMed Center

    Google Scholar

  • Delhey, K. A review of Gloger’s rule, an ecogeographic color rule: definitions, interpretations, and evidence. Biol. Rev. camb. Phil. Soc. 941294-1316 (2019).

    Google Scholar

  • Marchetti, K. Dark habitats and bright birds illustrate the role of environment in species divergence. Nature 362149-152 (1993).

    Google Scholar

  • Endler, JA The color of light in forests and its implications. School. Mongr. 631–27 (1993).

    Google Scholar

  • Schemske, DW in Speciation and patterns of diversity Flight. 12 (eds Butlin, R. et al.) 219–239 (Cambridge Univ. Press, 2009).

  • Schemske, DW, Mittelbach, GG, Cornell, HV, Sobel, JM & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Ann. Rev. School. Evol. System 40245–269 (2009).

    Google Scholar

  • MacArthur, RH Community models in the tropics. Biol. J. Linn. Soc. 119–30 (1969).

    Google Scholar

  • Hadfield, JD & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies, and multi-trait models for continuous and categorical traits. I’m flying. Biol. 23494-508 (2010).

    CASE

    Google Scholar

  • Cooney, CR et al. Sexual selection predicts the rate and direction of color divergence in large avian radiation. Nat. Common. ten1773 (2019).

    PubMed
    PubMed Center

    Google Scholar

  • Cooney, CR, MacGregor, HEA, Seddon, N. & Tobias, JA Multimodal signal evolution in birds: reassessment of a standard proxy for sexual selection. proc. R. Soc. B 28520181557 (2018).

    PubMed
    PubMed Center

    Google Scholar

  • van der Bijl, W. et al. Butterfly dichromatism evolved primarily via Darwin’s model, not Wallace’s. Evol. Lett. 4545–555 (2020).

    PubMed
    PubMed Center

    Google Scholar

  • Darwin, CR Male Descent and Sex Selection (John Murray, 1871).

  • Tobias, JA, Montgomerie, R. & Lyon, BE The evolution of feminine adornments and armaments: social selection, sexual selection and ecological competition. Phil. Trans. R. Soc. B 3672274-2293 (2012).

    PubMed
    PubMed Center

    Google Scholar

  • Galván, I., Negro, JJ, Rodríguez, A. & Carrascal, LM On showy dwarfs and sober giants: body size as a constraint for the evolution of plumage coloration in birds. Acta Ornitol. 4865–80 (2013).

    Google Scholar

  • Kiltie, RA Scaling visual acuity with body size in mammals and birds. Function School. 14226–234 (2000).

    Google Scholar

  • Zahavi, A. & Zahavi, A. The principle of disability (Oxford Univ. Press, 1997).

  • Badyaev, AV & Hill, GE Avian sexual dichromatism in relation to phylogeny and ecology. Ann. Rev. School. Evol. System 3427–49 (2003).

    Google Scholar

  • Simpson, RK, Johnson, MA, and Murphy, TG Migration and evolution of sexual dichromatism: evolutionary loss of female coloration with migration in wood warblers. proc. R. Soc. B 28220150375 (2015).

    PubMed
    PubMed Center

    Google Scholar

  • Helferich, G. Humboldt Cosmos (Tantor eBooks, 2011).

  • Jetz, W., Thomas, GH, Joy, JB, Hartmann, K. & Mooers, AO The global diversity of birds in space and time. Nature 491444–448 (2012).

    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Him, Y. et al. Segment biological specimens from photos to understand the evolution of UV plumage in passerines. Preprint at bioRxiv https://doi.org/10.1101/2021.07.22.453339 (2021).

  • Chen, LC, Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Separable atrous convolution encoder-decoder for semantic image segmentation. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.02611 (2018).

  • Hussein, BR, Malik, OA, Ong, W.-H. & Slik, JWF in Lecture notes on computational science and technology in electrical engineering (eds Alfred, R. et al.) 321–330 (Springer Singapore, 2020).

  • Troscianko, J. & Stevens, M. Image Calibration and Analysis Toolkit – a free software suite for objectively measuring reflectance, color and pattern. Methods Ecol. Evol. 61320-1331 (2015).

    PubMed
    PubMed Center

    Google Scholar

  • Hijmans, RJ raster: Analysis and modeling of geographic data. R package version 3.5-15 https://CRAN.R-project.org/package=raster (2022).

  • Maia, R., Gruson, H., Endler, JA, White, TE & O’Hara, RB pavo 2: new tools for spectral and spatial color analysis in R. Methods Ecol. Evol. ten1097-1107 (2019).

    Google Scholar

  • Stoddard, MC et al. Wild hummingbirds discriminate non-spectral colors. proc. Natl Acad. Science. United States 11715112–15122 (2020).

    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Gomez, D. & Théry, M. Simultaneous Crypsis and Color Pattern Visibility: Comparative Analysis of a Neotropical Rainforest Bird Community. A m. Nat. 169S42–S61 (2007).

    Google Scholar

  • Blonder, B. Do hypervolumes have holes? A m. Nat. 187E93–E105 (2016).

    Google Scholar

  • Schliep, KP phangorn: phylogenetic analysis in R. Bioinformatics 27592–593 (2011).

    CASE

    Google Scholar

  • Fick, SE & Hijmans, RJ WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 374302–4315 (2017).

    Google Scholar

  • Beckmann, M. et al. glUV: A global UV-B radiation dataset for macroecological studies. Methods Ecol. Evol. 5372-383 (2014).

    Google Scholar

  • Running, SW et al. A continuous satellite measurement of global terrestrial primary production. Biosciences 54547–560 (2004).

    Google Scholar

  • Tobias, JA & Pigot, AL Integrating behavior and ecology into global biodiversity conservation strategies. Phil. Trans. R. Soc. B 37420190012 (2019).

    PubMed
    PubMed Center

    Google Scholar

  • Dunn, PO, Whittingham, LA & Pitcher, TE Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55161-175 (2001).

    CASE

    Google Scholar

  • Bivand, RS & Wong, DWS Comparison of implementations of global and local indicators of spatial association. TEST 27716–748 (2018).

    Google Scholar

  • Hawkins, BA et al. Structural bias in species-level aggregate variables driven by repeated species co-occurrences: a pervasive problem in community and assemblage data. J. Biogeogr. 441199-1211 (2017).

    Google Scholar

  • Hadfield, JD MCMC Methods for Generalized Linear Multiple Response Mixed Models: The MCMCglmm R package. J. Stat. Software 331–22 (2010).

    Google Scholar

  • Healy, K. et al. Ecology and lifestyle explain the variation in the lifespan of birds and mammals. proc. R. Soc. B 28120140298 (2014).

    PubMed
    PubMed Center

    Google Scholar

  • Core Team R R: a language and an environment for statistical computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/

  • Comments are closed.